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ABSTRACT

An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipu-

lators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a
new class of mathematical constructs which provide unique information processing capabilities to artificial

neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kine-
matic invariances embedded within the presented samples. Subsequently, joint-space configurations, required

to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior

neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training
"skew" to handle kinematics and environmental constraints.

1. INTRODUCTION

Space telerobots envisioned for exacting scientific and military applications in unstructured and haz-

ardous space environments, e.g., satellite servicing, space system construction and maintenance, plane-

tary missions etc., must be able to dexterously and adaptively manipulate objects in a nonstationary task

workspace. Redundancy in the design of robot manipulators has been suggested as one means to enhance

their dexterity and adaptability. In contradistinction to other engineering contexts where redundancy im-

plies fault-tolerance or superfluity, redundancy in robotics is determined relative to the task [4]. It refers to
a manipulator with more than the minimum number of degrees of freedom necessary to accomplish general

tasks. The major objective motivating introduction of redundancy in robot design and control is to use

the additional degrees of freedom to improve performance in complex and unstructured environments. It

helps overcome kinematic, mechanical and other design limitations of non-redundant manipulators. Also,

the extra degrees of freedom can be used during real-time manipulator operation to simultaneously achieve
end-effector trajectory control while satisfying additional constraints.

There are two primary goals in developing control strategies which take advantage of redundancy. First,

given the initial and final end-effector task coordinates, simultaneously generate, in real time, a Cartesian-

space trajectory that enables the robot to achieve a goal (the path planning problem ) and a set of joint space

configurations, which cause the end-effector to follow the desired trajectory (inverse kinematics problem)

while satisfying additional constraints, such as obstacle avoidance, servo-motor torque minimization and

joint limit avoidance. Developing algorithms to use the additional degrees of freedom to satisfy constraints
is known as the redundancy resolution problem [1,4,7,16]. Secondly, provide adaptive mechanisms for re-

sponding to any unforeseen changes in the workspace or the manipulator geometry. Despite a tremendous

growth in research activity on "model-based" adaptive control algorithms, the above problems entail a level

of computational and paradigmatic complexity far exceeding that which can be provided by the existing

strategies.

Artificial neural networks on the other hand, defined as massively parallel, adaptive dynamical systems

modeled on the general features of biological networks, interact with the objects of the real world and its
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statistical characteristics in the same way as living beings do. The potential advantages of neuronal processing

arise as a result of their ability to perform parallel, asynchronous and distributed information processing in

a dynamic self-organizing manner typical of living systems. Neurons with simple properties and interacting

according to relatively simple rules can accomplish collectively complex functions such as generalization,
error correction, pattern classification, learning etc. However, their paradigmatic strength for potential

applications, which require solving intractable computational problems or adaptive modeling, arises from a

spontaneous emergent ability to achieve functional synthesis and thereby learn topological mappings [8] i.e.,

establish relationships between multiple continuous-valued inputs and outputs, based on a presentation of a

large number of examples. Once the underlying invariances have been learned and encoded in the strengths

of the synaptic interconnections, the neural network can generalize to solve arbitrary problem instances. In

addition, the operational versions of these trained networks can be dynamically "regularized" at run-time

to satisfy one or more task-specific constraints, without any explicit retraining or reprogramming. Since the

inverse mappings are acquired from real-world examples, network functionality is not limited by assumptions

regarding parametric or environmental uncertainty [3]. Thus, neural networks provide an attractive alternate

algorithmic basis towards designing real-time manipulator control architectures for automating "man-out-

of-the-telerobot-loop" tasks beyond the existing technology. In this paper we introduce a powerful neural

learning methodology for addressing the inverse kinematics problem commonly encountered during the design

of real-time, adaptive systems operating in redundant environments.

2. MANIPULATOR INVERSE KINEMATICS

A forward kinematic function, 4_, is defined as a nonlinear differentiable function which uniquely relates

a set of NQ joint variables, _, to a set of Nx task-space coordinates, z: z = _(_). For serial chain robot

manipulators the forward kinematic function is easily derived [11]. The more difficult problem, which is of

primary practical interest in robot manipulation, is the inverse transformation: _ = _-1(_). In other

words, determine one or more sets of joint configurations which take the end-effector into a desired task

position and orientation in the operational workspace. While the inverse kinematic function is highly nonlin-
ear, closed-form analytical solutions can be found for a number of non-redundant manipulators with special

architecture. Complete positioning capability in Cartesian space can be nominally achieved by using only six
degrees of freedom. However, most manipulators have degenerate configurations, or kinematic singularities,

near which small displacements of the end-effector require physically unrealizable joint speeds. These singu-

larities effectively lead to a loss of usable workspace and capability, and there is a strong incentive to design

robots with additional degrees of freedom to overcome this and other problems. However, incorporation of

redundancy injects additional complexity into the inverse kinematic problem. For redundant manipulators,

the inverse kinematics problem has an infinity of solutions, which can be mapped into a finite set of manifolds

[4].

Because of this infinity of solutions, many redundant manipulator investigators have chosen to focus on

the instantaneous or differential kinematics [15], in which the instantaneous end-effector velocity is related to

the instantaneous joint velocities by the manipulator Jacobian matrix. For redundant robots the manipulator
Jacobian is not uniquely invertible, and pseudo-inverse techniques can be used to select a solution from the

infinity of possible solutions. But pseudo-inverse resolution techniques are generally not-cyclic, i.e., do not

generate closed joint-sp_e trajectories corresponding to closed end-effector trajectories, thereby posing a

serious limitation for practical implementations. So, in the absence of satisfactory closed-form solutions,

ofltine iterative approximation techniques based on "local-methods" have been used, e.g., "augmented task

method" proposed by Goldenberg et al. [5]. The latter however suffers from algorithmic singularities and
is computationally prohibitive for manipulators with large degrees of freedom. In addition, the existing

algebraic and geometric strategies provide limited mechanisms for resolution of kinematic redundancy with

respect to multiple criteria [3] and have little susceptibility to unforeseen changes in the workspace or the
manipulator geometry, etc. Since no mechanisms are provided for resolving redundancy over more than one

internal self-motion manifold, each different application requirement may entail reprogramming the control

algorithm, thereby severely limiting manipulator functionality.

In contrast, neuromorphic approaches to the inverse kinematics problem entail systems composed of

many simple processors ("neurons"), fully or sparsely interconnected, whose functions are determined by the
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topology and strength of the interconnections. The synaptie elements of such neural systems must capture
the transcendental kinematic transformations by using a priori generated examples enabling subsequent

generalization to other points in the workspace. Thus, the inverse transformation equations do not need to
be explicitly programmed or derived. Once they have been learned, the network's inherent self-organizing

abilities enable it to adapt to changes in the environment, e.g. planning joint trajectories in the presence

of obstacles or to any unforeseen changes in the mechanical structure of the manipulator, with little effort

[8]. Within a neuromorphic framework, a solution of the inverse kinematic problem involves two phases: a

training phase and a recall phase. The training phase involves encoding the inverse mapping in the network's

synaptic weight space, through repeated presentations of a finite set of a priori generated examples, linking
Cartesian space end-effector coordinates to the corresponding joint angles. Once the network has acquired the

nonlinear mapping imbedded within the training set, it can be used to rapidly recall, or generalize the joint

configuration corresponding to any arbitrary Cartesian-space orientation within its workspace of training,

thereby eliminating the intensive computational overheads that plague the existing iterative techniques.

Also, once the training cycle is completed, the time required to obtain a solution practically depends in a

weak fashion on the number of degrees of freedom. In the past, Josin [8], Guez et ai. [6] and Tawel et al. [14]

have applied this generic neuromorphic paradigm to the inverse kinematics problem for a 3-DOF redundant

manipulator. In particular, they train a heteroassociative, multi-layered feed-forward neural network by

using the hackpropagation algorithm (for details refer to [13]).

Despite its conceptual simplicity, there are a number of non-trivial issues, both from the kinematics

perspective and from the computational cost perspective that have hitherto limited the efficacy of such neu-

romorphic solutions to the inverse kinematics problem for redundant motion control. The major limitations,
as discerned from the existing implementations, include an unacceptably large number of training iterations

( O(10 6) even for generalizing over small manifolds, see Tawel et al. [14]). Also the interpolated angular
coordinates have relatively poor precision as compared to their algebraic or iterative counterparts. Besides,

the backpropagation algorithm fails to efficiently scale-up to configurations with large number of degrees
of freedom. For example, manipulators with seven or more degrees of freedom could not be satisfactorily

trained by use of the standard back-propagation algorithm even after several million iterations. Furthermore,

the back-propagation algorithm per se does not provide any intrinsic mechanism to simultaneously exploit

redundancy to increase the task workspace (design constraints) and satisfy additional requirements inher-

ent to operations in an unstructured environment such as obstacle avoidance in real-time. Since the latter

flexibility is essential to the purpose of redundant manipulators [16], there is a strong incentive to develop

an alternative neural network methodology that alleviates the above limitations to provide an efficient and

accurate solution to the inverse kinematics problem.

3. NEURODYNAMICAL FORMULATION

3.1. Training Network Specification

Consider a fully connected neural network with N graded-response neurons, implementing a nonlinear

functional mapping from the Nx-dimensional input space to the NQ-dimensional output space. The network

is topographically partitioned into three mutually exclusive regions comprising a set of input neurons, Sx,

that receives the input coordinates, an output set, SQ, which provides the output coordinates required to
achieve the desired output, and a set of "hidden" neurons, SH, that partially encode the input / output

mapping. The network is presented with K randomly sampled training pairs of input-output, { _k, #k I

k = 1,..., K} obtained by solving the well-posed forward kinematics formulation (see Paul [11]).
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The neuromorphic reformulation of the inverse kinematics problem requires determining synaptic inter-
connection strengths that can accurately capture the transcendental transformations imbedded within the

training samples. Our approach is based upon the minimization of a constrained Hamiltonian ('neuromor-
phic energy"), given by the following expression:

E - 2"-K _x E [u_ - z_ + _ [u_ - q_]2 + A,g,(-) (3.1.1)
k=l IESx

where u_ denotes the l-th neuron's activity when processing the k-th training sample, gr(') reflects network

constraints and the design considerations related to specific applications, e.g., singularity avoidance [4],
obstacle avoidance [10], joint availability etc., and Ar denotes the Lagrangiaua multiplier corresponding to the

r-th application of design requirement. The proposed objective function therefore includes contributions

from two sources. Firstly, it enforces convergence of every neuron in Sx and Sq to attractors corresponding
to the presented input-output coordinates and joint coordinates respectively for every sample pair in the

training set, thereby enforcing the network to learn the underlying kinematic invariances. Secondly, it

enforces the synaptic elements to satisfy network constraints of the type

1 (i - j)_Ti_gr(') =

which minimize the interconnection strengths in line with the Ganss's least-constraint principle. For a more

detailed treatment of redundancy resolution refer to [2,3]. We now proceed with the derivation of the learning

equations (time evolution of the synaptic weights) by minimizing the energy function given in eqn. (3.1.1).

Lyapunov's stability criteria require an energy function to be monotonically decreasing in time. Since

in our model the internal dynamical parameters of interest are the synaptic interconnection strengths, T,m,
and the Lagrange multipliers At, this implies that

E = 0To----: <0

One can choose

(3.1.2)

,'r T.,., = OE
0T, n, (3.1.3)

where rr is an arbitrary but positive time-scaleparameter. Then substituting in Eqs. (3.1.2) we have

OE

"r

In the above expression _ denotes tensor contraction, i.e., 2b _ _b -

fortiori if for some 0 > 0,

 -E+0 <
r

The equations of motion for the Lagrange multipliers ,_, must now be constructed in such a way that Eq.

(3.1.4) is strictly satisfied. Noting that the analytic expression for the energy function results in 0_ = g,('),
we adopt the following model:

A, = rTgsg -I- 0 g" (3.1.6)

where _ _ _ - _,,. g,.(.) g,(.), and 0 is an arbitrary positive constant. It is easy to see that/_ < 0 is

strictly satisfied. Also on differentiating Eqs. (3.1.1) with respect to Tnm we get

OE 1 _{ 1 Ou_
IE Sx

1

(3.1.4)

_], )"]_j _j _j. This will be true a

(3.1.5)

(3.1.7)
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If we define

._L_ _ _] ifl E SQ
_f_ = 0 if/ E SH (3.1.8)

K---_x[u_ -- z_] if/ E Sx

then we can rewrite Eqn. (3.1.7) as

aE au_
OT.m - Z Zip 07'.,. (3.1.9)

l k

where the index I is defined over the entire set of neurons. Eqs. [3.1.3, 3.1.8 and 3.1.9] constitute a dissipative

nonlinear dynamical system, the flow of which generally converges to a manifold of lower dimensionality in

the phase space. In this paper we focus on network convergence to point attractors, i.e., state-space vector
locations corresponding to the presented, joint- and Cartesian-space coordinates. Of crucial importance is to
know how stable these attractors are, and, starting from arbitrary network configurations how fast they can

be reached. In this vein, we first briefly review a novel mathematical concept in dynamical systems theory,
the terminal attractor, and its properties that subsequently will enable us to formalize efficient algorithms

for learning the inverse kinematics mapping.

Artificial neural networks store memory states or patterns in terms of the fixed points of the network

dynamics, such that initial configurations of neurons in some neighborhood, or basin of attraction, of that

memory state will be attracted to it [9]. But the static attractors considered so far in nonlinear dynamical

system formulations in general, and in neural networks in particular, have represented regular solutions

to the differential equations of motion. Such solutions can never intersect the transients. The theoretical

relaxation time of the system to these "regular attractors" can theoretically be infinite, and they suffer

from convergence to spurious states and local minima. The concept of terminal attractors in dynamical

systems, was initially introduced by Zak [17,18] to obviate some of the above limitations, thereby significantly

improving the performance characteristics of associative memory neural network models.

The existence of terminal attractors was established by Zak [17,18] using the following argument: At

equilibrium, the fixed points, i_, of an N-dimensional, dissipative dynamical system

ui - fi(ul, u2, ,..', UN ) = 0 i = 1, 2,..., N (3.1.10)

are defined as its constant solutions fioo(/_). If the real parts of the eigenvalues, r/u, of the matrix Mq =

[_ax_.(/_)] are all negative, i.e., Re {Or} < 0, then these points are globally asymptotically stable. Such

points are called static attractors since each motion along the phase curve that gets close enough to/5, i.e.,
enters a so-called basin of attraction, approaches the corresponding constant value as a limit as t _ oo.

An equilibrium point represents a repeller if at least one of the eigenvalues of the matrix M has a positive

real part. Usually, nonlinear neural networks deal only with systems which satisfy the Lipschitz condition,

i.e., I _J [ < oo. This condition guarantees the existence of a unique solution for each of the initial phase
space configurations. That is why a transient solution cannot intersect the corresponding constant solution
to which it tends, and therefore the theoretical time of approaching the attractors is always infinite.

In contrast, Zak's notion of terminal attractors is based upon the violation of the Lipschitz condition.

As a result of this violation the fixed point becomes a singular solution which envelops the family of regular

solutions, while each regular solution approaches the terminal attractor in finite time. To formally exhibit a

terminal attractor which is approached by transients in finite time, consider the following one-dimensional

example:

This equation has an equilibrium point at u =
since

dfi _ 1 u_213
du 3

= --U 1/3 (3.1.11)

0 at which the Lipschitz uniqueness condition is violated,

-oo at u ---. 0 (3.1.12)
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Since here Re{r/} _ -oo < 0, this point is an attractor with "infinite" local stability. As a

consequence, the dynamical system is bestowed with "infinite attraction power", enabling rapid clamping of
neuronal potentials to the fixed points; in this case the above phenomena imply immediate relaxation to the

desired attractor coordinates, zt and qt. Also the relaxation time for the solution corresponding to initial
conditions u = u0 of this attractor is finite. It is given by

_ -. o du 3 2/3to = - o u'i-/3 - _u° < oo (3.1.13)

i.e., this attractor becomes terminal. It represents a singular solution which is intersected by all the attracted

transients. In particular static terminal attractors occur for k = (2n+l) -1 and n > 1, while for k = 2n+l

all attractors axe regular. It has been shown that incorporation of terminal attractor dynamics leads to the

elimination of all spurious states. This property is critical to providing an accurate generalization ability

during the operational phase. It ensures that interpolations / extrapolations of joint configurations are not

based on false attractors, i.e., attractor coordinates not obtainable by the forward kinematics mapping. In
our proposed neuromorphic framework, terminal attractor dynamics then provides a mechanism that can

implicitly exploit the time-bounded terminality of phase trajectories and the locally infinite stability, thereby

enabling an efficient and accurate solution to the manipulator inverse kinematics.

3.2. Virtual Attractor Computation

The Hamiltonian defined in Eqs. (3.1.1) specified the functionality of our fully connected neural network,

i.e., learn the inverse kinematics mapping. We now need to select the network dynamics for evolving the
synaptic elements, such that the latter's convergence to steady state leads towards the above function. So

to capture the kinematic invaxiances consider the following neurodynamics.

r,u_ + u_ = 10.r [E Tn,u_ ] - If (3.2.1)
It

Here ut represents the mean soma potential of the/-th neuron ( utk is the neuron's activity when processing

the k-th training sample ), 7_t, denotes the synaptic coupling from the l'th to the /-th neuron, and If

captures the varying input/output contribution in a terminal attractor formalism. Though If influences the
degree of stability of the system and the convergence to fixed points in finite time, it does not further affect

the location of existing static attractors. And, t0.r(. ) denotes the sigmoidal neural response function with

gain 7; typically, _7(z) = tanh(7, z). In topographic maps NT neurons are generally used to compute

a single value of interest in terms of spatially-coded response strengths. Here we use the simplest possible

model (where NT. = 1 ), but encode the information through terminal attractors. Thus, the topographic
map is given by

If _ ( u_ - x_)1/3 if IE Sx= 0 if l E SH (3.2.2)
( ( _ q )i/3 if t e sq

where z_ and q_ are the attractor coordinates provided by the training sample, to be denoted for brevity as

a_. Our basic operating assumption for the dynamical system defined by (3.2.1) is that at equilibrium

u, _ 0 and u, _ an

This yields the fixed point equations :

In associative memory applications, these equations can in principle be used to determine the synaptic

coupling matrix T, resulting in each memory pattern being stored as a fixed point. The key issue is that

some of these fixed points may actually be repellers. The terminal attractors are thus used to guarantee that
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each fixed point becomes an attractor, i.e., spurious states are suppressed. In this case however, we are in the

process of learning a continuous mapping between two spaces and attractor coordinates have been defined
for only two of the three topographic regions of the network, i.e., the input set Sx, and the output set Sq.

Consequently, the fixed point equation a = _(Tfi) may not necessarily be defined, since for ] SH I > 0,

{ a, [ n E S//} are not defined, and cannot be used for directly computing T.

This necessitates a strategy whereby virtual attractor coordinates are first determined for the hidden

units. These coordinates are virtual since they correspond to a current estimate 2h of the synaptic connectivity

matrix. This is achieved by considering the fixed point equations as adaptive conservation equations which

use the extra degrees of freedom made available by the hidden neurons in SH. Let { fij = aj [ j E SH }

denote the virtual attractors to which the unknowns, { uj I J E SH }, are expected to converge. Then at

equilibrium Eqn. (3.2.3) yields

i_ESx j_ESN ItESQ

_,-,(_j) = _ _,,=,, + _ _,_, + _ _,,q,, v_ e s.
i_ESx j'ESH I'ESo

_,-,(q,)= _ _,,,=,,+ _ _,_,_, + _ _,,q,, w _ sq
iJESx jlESI.I I'ESQ

(3.2.4)

where _t denotes the current estimate of synaptic coupling from /-th neuron to the j-th neuron, and fij
represents a virtual attractor whose value is isomorphic to the current level of knowledge in the network.
Now define

¢i : _-X(_cl) - _ Ti,'=i' - _ _t'q; V i E Sx
i S I t

cj = _ _,,_,, + _ _,,q,, v_ • s.
i _ I'

_, = _-'(=,) - _ _,,,=,,- _ _,,,q,, v t • sQ.
i' I'

(3.2.5)

Then consistency with the terminal attractor dynamics assumptions requires that { fij [ j • SH } be

simultaneous solutions to the following "conservation" equations

j'ESH

- _, _,_,_, = ¢_ v _ • s,,
j'ESn

T_,uf ¢_ V I • S O

j'ESH

(3.2.6)

The above system of equations for fi is generally overdetermined. A number of standard algorithms exist to

obtain a good approximate solution to such a system. In our implementation we use an iterative approach

(e.g. conjugate gradient descent ) to minimize the function

- 2Nx _ ¢' - _i, _j'fij'
1 (+ _ _.. _J- _[_j,_'_' + _ ]

2

(3.2.7)
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We can now return to the computation of0u_ / aTnm in Eq. (3.1.9). Let us define z_ = _t, T}v uv and

denote _p_ _= a,_ "Then at equilibrium' as u_ _ 0 andI_ _ 0, wehave

1OT.rn - V_k _l, OT._ ,, OT.,. J

which can be rewrittenas

oBk n k

_v [ 6zt, - V_k Tat, ] = iotk6t,_urn (3.2.9)aT,-----_

In the above expression 60 denotes the Kronecker symbol. We now define, following [12], a weighted coupling

matrix A_, = 6n, - _o_kTn,. Then substituting A_, in (3.2.9), and premultiplying both sides with [A-X]tkn
and summing over 1 yields

Ou_, k (3.2.10)
Z [A-I]_ ' Ate' ornrn - E [A-X]_ , V_k 6m urn.

I I

Carrying out the algebra and relabeling the dummy indices results in

, k (3.2.11)0u_ -- [A-1]_, V,k u,,,.
07",,,,

The above expression can now be substituted in Eq. (3.2.10); the learning equation thus takes the form

t k
vrT.rn = -Y_E/P [A-1 ]L 9,,k urn

I k

where the indices I and k run over the complete sets of neurons and training samples.

3.3. Adjoint Network Dynamics

(3.2.12)

A computation of the synaptic interconnection matrix as suggested by Eq. (3.2.12) would involve a matrix

inversion. Since direct matrix inversion is typically nonlocal, we adopt the relaxation procedure suggested by

Pineda [12] to compute the synaptic updates defined by (3.2.12). Consider the following change of variable

k 1 ^
%' E[A- ]_n I_ '= _onk (3.3.1)

I

Then substituting (3.3.1) in (3.2.12) we have

, -- I_ (3.3.2)
n _Onl:

One can also use the explicit form of A_v and by substitution in (3.2.12), we obtain

Regrouping the previous equations and (3.3.2), and relabeling the dummy indices yields

k t _. k ^kv n = _onk • [,._, Tp,,vp + I_, ]. (3.3.4)
P

k represents a fixed, point solution of an "adjoint"where rv denotes the relaxation constant. We see that %

neural network having the following coupled dynamics:
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, + (3.3.5)+ ,,. = • [ T,.. ,,,
P

By comparing Eqs. (3.2.12, 3.3.1 and 3.3.5) we see that the resulting neural learning equations couple the

terminal attractor dynamics for u_ with the adjoint dynamics for v_, i.e.,

During run-time, i.e., after the kinematic invariances have been learned, the above neurodynamics can be

used to generate joint-configurations corresponding to arbitrary task end-effector positions, with two primary
modifications. Firstly, in the operational phase, terminal attractor coordinates are specified only on the input

neurons. Secondly, adaptive virtual attractor computation is no longer required. The pseudo-code for the

complete neural learning algorithm, criteria for selecting different time-scales and the results of our simulation

on 3-dof and 7-dof redundant manipulators are reported in [3,19].

e CONCLUSIONS

In this paper we have attempted to address a complex problem in robotics research, which enables the

enhancement of manipulative capability and reliability. Our novel learning paradigm for neural network mod-

els, based on the terminal attractor concept, is shown [19] to be computationally competitive with iterative

methods currently used in robotics to solve the inverse kinematics of redundant manipulators. In addition,

this strategy does not appear to suffer from non-cyclicity of motion, as encountered in the pseudo-inverse

resolution techniques, or the algorithmic singularities common to augmented task approaches. Further-

more, unlike the feed forward, backpropagation neural learning approaches, the adaptive dynamical system

formulation presented here provides the flexibility for incorporating arbitrary combinations of kinematic

optimization criteria, without imposing high computational overheads. Two options are available for includ-

ing the redundancy resolution criteria in the algorithm to resolve the nonuniqueness of joint configurations
that may satisfy a given end-effector configuration. The constraints may either be included a prior/, i.e.,

while generating the training samples themselves, thereby forcing the network to learn only limited aspects
of inverse kinematics mapping with a bias towards a particular criterion [2,3]; or they could be selectively

applied in real-time to an operational version of the network (trained to encode the emergent invariants of
the inverse kinematic mapping), to regularize the solutions (i.e. provide unique best answers ) [3].

Despite the emphasis on real-time performance, the dexterous nature of applications envisaged for the

next-generation robots imposes uncompromising demands on the resultant end-effector trajectory. Conse-

quently, this entails the generation of intermediate joint angles with a high degree of precision, currently
achievable only through off-line programming techniques (e.g., acceptable error tolerances are below 0.05%).

In this context, our future directions for research include development of true neural topographic map tech-

niques, enabling the much higher resolution needed to achieve the desired precision in interpolated joint

angles.
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